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SIMON NEWCOMB, PERCY DANIELL, AND THE HISTORY OF ROBUST
ESTIMATION 1885-1920.

by

*
Stephen M. Stigler
ek
The University of Wisconsin, Madison

0. Introduction

In the eighteenth century, the word "robust" was used to refer
to sonéone who was. strong, yet boisterous, crude, and vulgar. By 1953
when Box first gave the word its statistical meaning, the evolution of
language had eliminated the negative connotation: robust meant simply
strong, hardy, healthy. The subject of robust inference, just like the
word "robust", has a long and varied history. It is the aim of this
present study to examine a part of this history and its relationship to
current work.

The scope of this paper will be rather narrow - we shall only be
concerned with the mathematical background and development of robust
estimation up to 1920. Thus we shall be less concerned with the first

appearances of estimators such as the median and trimmed mean than with

"
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the first mathematical analyses of their behavior and properties. The
main emphasis will be on the period 1885-1920, and particuiar attention
will be given to work which is not widely known, yet is relevant to
modern lines of thought. Section two discusses the contributions of
Simon Newcomb to robust estimation, and to the use of normal mixtures as
models for heavy-tailed distributions; section three is concerned with
the history of the mathematical analysis of order statistics in relation
to robust estimation, with due attention to the works of Laplace,
Sheppard, and Percy Daniell; and section four contains some brief remarks
on "M-estimators”.

The reader may be as surprised as the author was to find to
what extent priorities in thése areas have been misassigned. While many
other points will be touched upon in the paper, our major findings are
as follows: Laplace (1818) and Sheppard (1899) seem to have been the
first to present a large sample theory for one or two order statistics.
Simon Hewcomb (1886) provided the first sound, modern approach to robust
estimation, including the first use of mixtures of normal densities as
representing heavy-tailed distributions. Percy Daniell (1920) should be
credited with the first mathematical analysis of the class of estimators
which are Tinear functions of order statistics, including the derivation
of the optimal weighting functions for estimating scale and location
parameters (the so-called "ideal" linear estimators) and the first
mathematical treatﬁént of the trimmed mean. Some of Newcomb's work has
been commented upon recently by Huber (1972), but much of the remainder

of the work discussed in this paper, including that due to Ldgeworth,
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Galton, Laplace, Sheppard, and Daniell, has been largely ignored in

recent years.

We shall begin with a brief overview of the situation prior to 1885.

1. The Situation before 1885.

Scientists have been concerned with what we would call “robustness” -
sensitivity of procedures to departures from assumptions, particularly the
assumption of normality - for as long as they have been employing well-
defined procedures, perhaps longer. For example, in the first published
work on least squares, Legendre (1805) explicitly provided for the rejection
of outliers:

“If among these errors are some which appear too large to be admissibie,
then those equations which produced these errors will be rejected, as
coming from too faulty experiments, and the unknowns will be determined
by means of other equations, which will then give much smaller errors".
Yet most of the early work in mathematical statistics was obsessed with
“proving" the method of least squares, either starting with the assumption
that the sample mean is the best estimate of the mean and deriving the
normal distribution, as Gauss did in his first proof in 1309, or starting
with the normal law or the central limit theorem, as did Laplace in 1812.
The first mathematical work on robust estimation seems to have been that of
Laplace (1818) on the distribution of the median. We shall defer a discussior
of Laplace's work until section three, where it will be considered with
later work on linear functions of order statistics.

The next statistical problem connected with robust estimation to

receive mathematical treatment was the rejection of outliers. In 1852,



the first proposal of a criterion for the determination of outliers was
published by Benjamin Peirce, the Harvard mathematician-astronomer and
father of logician-philosopher C. S. Peirce. Peirce's paper and most others
on this subject* are not really about robust estimation, as their authors
did not concern themselves with the properties of the resulting estimators;
rather, they implicitly assumed that after the outlier test was performed
the estimation could be done with no thought given to what had gone before,
nor what information might be lost. This narrowness of view did not go
unnoticed at the time. The first paper proposing an outlier criterion
(Peirce, 1852) was soon followed by the first paper criticizing the use
of outlier criteria (Airy, 1856). Airy, the Astronomer Royal, wrote:
“And I have, not without surprize to myself, been led to think that
the whole theory is defective in its foundation, and illusory in its
results; that no rule for the exclusion of observations can be
obtained by any process founded purely upon a consideration of the
discordance of these observations”.
A lively debate ensued, with the participants not always expressing them-
selves with Airy's restraint. For example, Glaisher (1872) wrote "Professor

Pierce's [sic] criterion for the rejection of doubtful observations seems

Wk
to me to be destitute of scientific precision".

One of the more interesting papers of this time (and one of the

most unusual statistical papers of all time) appeared in the Poport of

the Superintendent of the U.S. Coast Survey for 1870. It is by C. S. Peirce,

*See Anscombe (1960) and Rider (1933) for historical surveys of outlier
techniques.

o*% de
At one point an exchange in print between the mathematician Glaisher

and the astronomer Stone became so heated that one of Glaisher's papers
was itself rejected by the Monthly Notices of the Royal Astronomical
Society due to the personal nature of his comments; see Glaisher (1874‘.

.



written while he was an Assistant to the Coast Survey (at the time his
father was Superintendent of the Survey!), In ihe paper Peirce presented
the then standard material of the theory of errors, but in the language
and notation which he had developed for the logic of relations, for
which he later became famous. Thus we find, regarding averages,

"Since [m] denotes all men, we may naturally write q%l to denote

what all men become when that factor is removed which makes [m]
refer to men rather than to anything else; that is to say, to denote
the numbe¥ of men. We may write this for short [m] with heav
brackets. Then t being a relative term ("a tooth of,") by [%1
will be denoted the total number of teeth in the universe. But

[t) will be used as equivalent to tl , or the average number of
teeth that anything has."

Peirce included a sensible - one is tempted to say “logical” - defense of
his father's outlier criterion in the paper (p. 210). By 1885 a number
of rejection criteria were in use, often only by the proposer and his employees.
But techniques other than simply “reject outliers, then use the
sample mean" were also employed. A variety of weighted means had been
used prior to 1885. For example, in 1763 James Short (an English astronomer
and noted manufacturer of telescopes) had estimated the sun's parallax
based on observations of the transit of Venus of 1761 by averaqging three
means: the sample mean, the mean of all observations with residuals less
than one second, and the mean of those with residuals less than half a
second. The median and the midrange had appeared even earlier
(Eisenhart (1971)).
By the last halif of the nineteenth century, weighted least
squares had become a standard topic in the literature of the theory of

errors, and it was a frequent practice (at least in astronomical
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investiqgations) to weight observations differently, depending upon the
statistician's (often subjective) estimate of the "probable error"* of
the observation. The estimate of the probable error was supposed to be
based solely on external evidence: scientists were warned of the possible
biases if the magnitude of the observation were allowed to influence its
weight (see Jevons (1874, p. 450), for example), but it is doubtful that
this advice was faithfully adhered to. We shall discuss the use of these
weighted means further in the next section, in connection with the
contributions of Simon Newcomb.
Nther estimators were proposed in this period. In particular,
De torgan (1847, p. 456) n-F uiinen! 1 scheme for discounting the more
extreme noservations.” T - uethod, wore fully developed by Glaisher (1873),
arounced to starting with the sample wmean, then assigning different probable
errors to the different observations based on the value of the likelihood
function at those observations, and iterating this process. Glaisher's
estimate was criticized by both Stone (1873) and Edgeworth (1883), who
both (independently) proposed an alternative based on looking at a local
maximum of the likelihood function (without assuming equal probable errors).
Edgeworth later became disenchanted with this alternative (Edgeworth, 1887a).
At about this time, Francis Galton was making much use of the
median (Galton, 1875), although his motivation was less suspicion of the
‘normal distribution, which he considered a good representation of many

real phenomena, than an appreciation of the simplicity, ease of calculation,

*The probable error of a symmetric distribution is half the interquartile
range; for normal distributions p.e. = (.6745)0.

o



and ease of interpretation of the median. Also, various formulae for
index numbers were developed during this period; these included weighted
averages and geometric means, each designed for a specific purpose.

However, it can still be said that by 1885, the conventional
wisdom {but by no means the unanimous view) was that for purposes of estimation,
the cautious use of the sample mean was recommended - sometimes weighted,

sometimes after discarding outliers, but still the sample mean.

2. Simon Newcomb and mixtures of normal densities !

1885 can be conveniently taken as the start of one of the most
active and innovative periods in the history of mathematical statistics.
The story of the developmenu of mathematical statistics into a subject
in its own right through the wovk of such men as Edgeworth, Karl Pearson,
Gosset, and Fisher has been told by E. S. Pearson (1967). Our present,
rather narrow purpose is to describe how the modern theory of robust estim-
ation developed over this period. To this end, we shall place particular
emphasis on the introduction of mixtures as models for the heavy-tailed
distributions which scientists had encountered in practice, and on the
use of linear functions of order statistics as robust estimators of
location parameters.

Simon Newcomb appears to have been the first to introduce a mixture
of normal densities as a model for a heavy-tailed distribution, and to
exploit this model to get an estimator of location which was more robust
than the sample mean. (Francis Galton and Karl Pearson had modeled measure-

ments of natural populations by normal mixtures about the same time, but
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with a completely different otject in mind, namely to demonstrate how a
single population could be broken down into comporents.) While Newcomb's
name may be unfamiliar to present day statisticians, it should not be so
to astronomers, applied mathematicians, and economists.

Simon Newcomb (1835-1909) was born in Nova Scotia, attended
Harvard, and spent most of his adult life (1861-1897) as a professor of
mathematics in the U.S. Navy, working for the U.S. Nautical Almanac
Office. He is qgenerally regarded as th2 qreatest American astronomer
of the nineteenth century, and was responsible for many of the determin-
ations of astronomical constar*< which are still accepted today. in addition,
he was a powerful applied mathematician, co-founded and for many years

edited the American Journal of Mathematics, and as an avocation wrote

Principles of Political Economy (1885), a book which has established him

as a major American economic theorist, and which contains one of the
earliest modern mathematical statements of the quantity theory of money.

As was the practice in astronomy at the time, Newcomb made
frequent use of weighted means in his estimation of astronomical constants.
The relative weights were usually thought of in terms of “probable errors”,
and were assigned somewhat subjectively on the basis of Newcomb's judgment
of the relative accuracy of the process which produced the observation.

For example, after assessing some data on eclipses collected by Ptolemy
in the second century A.D., he remarked (Newcomb, 1878, p. 41):
“the [assigned] probable errors are the result of judgment from the
terms of [Ptolemy's] description rather than of calculation; they
were estimated without any knowledge of the way the comparison with

theory would come out, and are orinted without subsequent alteration",

With more contemporary data, Newcomb would base his choice of weights
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upon "the quality of the image and the generally satisfactory way in
which the image was kept on the crosswires® (Newcomb, 1891a, p. 170) in the
case of an experiment he was peronsally involved with, and upon the
number of observers, general opinion of the reporting observatory, and
"number and force of the doubtful circumstances "(Newcomb, 1891b, p. 383),
in cases involving combination of other's measurements. He was apparently
aware of criticism cf the subjective nature of these assignments, but
he maintained that
“"Opinions may doubtless differ as to whether a judicious system of
weights has always been applied, but it is not likely that any unbiased
reassignment would materially affect the result". (Newcomb, 1898,
p. 211?
Newcomb also rejected outliers when necessary, but usually only based on
external evidence or really huge deviations.
With this experience in dealing with observations made with
differing degrees of precision, it is notsurprising that, when faced with
a collection of nun-normal observations for which there was no satisfactory
way to weight them individuaily, he should consider a mixture of normal
densities with different variances as a model. For, having observed that
a collection of 684 residuals based on observations of the transits of
Mercury had much heavier tails than the corresponding normal distribution
(even with excessive deviations ignored), he wrote (Newcomb, 1882, p. 382):
"It is evident that if we have a collection of observations of ﬂ
different degrees of probable error, in which, however, there is no ‘
way of distinquishing those of great probable error from those of
small probable error, the law of the errors will not be that usually
adopted, but there will be a comparative excess of large residuals. ,
It is also evident that in such a case the arithmetical mean does i
not necessarily give the most probable result. For, in the case of an

observation of large residual, there is evidently a preponderance
of probability that it belongs to a class with large probable error,
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and therefore should be assigned least weight. ... That any general
collection of observations of transits of Mercury must be a mixture
of observations with different probable errors was made evident to
the writer by his observations of the transit of May 6, 1878, which
may be here described as an illustration of the subject."

Four years after writing this, Newcomb published a remarkable

paper in his own journal, the American Journal of Mathematics, in which

he used this model to arrive at a more robust estimatur of location than

the sample mean. In this paper (Newcomb, 1886)*. after criticizing the
averuse of autlier criteria and presenting his mixture model, he proceeded
to develop an estimator upon the principles of Bayesian decision theory that

gave "less weight to the more discordant observations". Adopting squared

error as a loss function (Newcomb's word for loss was "evil"), he demonstrated

that in general the posterior mean minimizes the expected mean square error,
and he suggested the following procedure. 1) Calculate the residuals

based on the samnle mean, and, using trial and error, fit a mixture of a
finite number of normal densities with zero means to these residuals.

2) Take this fitted mixture and, considering the location family it
generates, estimate the desired mean by the posterior mzan with respect

to a uniform prior given the original observations. Newcomb realized that
this procedure presented practical difficulties and gave a number of
simplifying approximations to arrive at & usable estimator. He illustrated

ok
its use with the data on the transits of Mercury.

*
Some of his arquments also appear in Hewcomb (1895), p. 81-86.

* &
Ogorodnikoff (1928) provided a different simplification of Newcomb's
estimator based on a Charlier expansion of the posterior distribution.
The relationship between Newcomb's simplified estimator and the maximum
likelihood estimator was discussed by Hulme and Symms (1939).

PR
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As an intaresting stdelight, we note that Yn this vapaer and in
a later work, Newcomb wmade an early use of a simple varsion of Tukay's
sensitivity function (see Andrews at. al,, 1972, p, 9G). In Newcomb
(1912, p. 212), discussing the unsatisfactory nature of outlier critaria,
he wrote that if all observations with large residuals ave rejected (and
the maan estimated from the ramaining cbservations), then the final result
"hecomas a discontinuous function of the residual of the rejected
observation, the continuity being broken at the point reqarded asg
the limit of normal aerror, A simple example will make the case
clear, If we have three observed results a,b,¢ of which the mean

is to be taken, and 1f ¢ be the rvesult which may be abnormal, than
so long as ¢ is retained we shall have

mean = é(a + b+ )

the mean will then continuously increase with ¢, When ¢ passes
the normal limit, the mean changes per saltum to

é(a * b)Y,

In the same posthumous paper (Newcomb, 1912, p. 214), he alsc proposed a very
simple estimator in the spirit of his 1886 paper: weight the observation

Xy by wy= c/max(lxi-il. c), where ¢ 1s a constant to be specified.

3. Laplace, Sheppard, Daniell, and Vinear functions of order statistics

With few exceptions, statisticians were quite late in coming to
consider any but the simplest linear functions of order statistics as
estimators of means. By a lincar function of order statistics we shall
mean any weighted linear combination of observations where the weiahts

depend only on their order, not on their magnitudes or the size of their
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rastduals.  The madian and the widrange, two mambors of this elass, evidenwly

have a long history (Lisenhart (14nd), (1971)), but perhaps the first
axtensive mathamatical analysis to be published invalving ordor statistics
was by Laplace. In the second supploment (1818) to his monumental

Thdorie Aalytigue des Probabilitds — Laplace considared the problem we
would now call linear vograssion through the ortain: PR AT

ui‘ oF known, y to be estimated, whare the errors Ry were assumed to
have an arbitrary continuous, symmetric distribution, By looking for

that astimator which minimizad the sum of tha absolute values of the
rasiduals, he was led to consider an estimator of y which reduces to

thy madian of the ai‘s in the case ny 1. Laplace derived the density
of this estimator, showed that this density appraaches the novmal donsity
as the sample size increases, and oave tha necessary and sufficient
condition on the error distribution that the wmedian have a smallew
asymptotic variance than the sample mean.* Laplace's proaf is easily
adopted to any sample percentile and asymmetrical populations, as was in
fact later noted by Edyeworth (1885, 1886). In addition, Laplace derived
the joint asymptotic density of the sample mean and median, and used it
to find which linear combination of these estimators has the smallest
asymptotic variance. (As the weights depend upon the unknown error
distribution, he termed this rvesult “impracticable", but noted that if the

error distribution were normal, the best linear combination was the sample

w

Laplace actually carried through his entire investigation in the more
general regression situation, comparing the general estimator with the
Teast squares estimator for this situation. For cther views of Laplace's
work and its historical context, see Cisenhart (1961) and Stigler (1372)
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mean alnn@‘)' Two years betore Laplace's invastigation, Gauss (1816),
considaring the problem of estimating the probable ervor oV a normal
distribution, had sugqested the use of the madian of the absolute
values of the residuals, and stated (without proof) the asymptotic probable
arror of the median for this special case. Gauss apparantly noaver
published or civculated a proof, for 14 years later Encke (1834), who
had corrasponded with Gauss, felt 1t necessary to provide one, attributing
Tt to Divighlet, It seems likely that Dirichlet's proof for this special
case was sfmply an adaptation of Laplace's, as Dirichlet was quite
familiar with Laplace's work, the socond supplement in particular (see
Dirichiat (1430)).

Later in the nineteenth century, Galton (1875) and particularly
Edgeworth (1885, 1887b, 1888), touted the use of the median in situations
where heavier tatls than the normal could be expected. Specifically,
Edyeworth (1888) used Laplace's results to conclude that the median may
well be better than the mean when the population distribution is one of
Newcomb's mixtures of normal distributions. Also, Edgeworth (1886) seems
to have been the first to realize that the median may possess an

advantaqge over the sample mean for serially correlated data.
More complicated linear estimators began to appear in 1889,

when Galton (in a footnote on p. 61-62 of Natural Inheritance) suggested

estimating the mean and standard deviation of a normal distribution by

what amounts to taking

*The possibility of a linear function of two estimators outperforming both
has been more fully exploited in the recent Princeton robustness study
(see Andrews et. al (1972) p. 132).

P X S ST SO U
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whare &p and & are tha p and g percentiles of the standard novmal
distribution, X("p) and x("“) are the sample p and q percentiles,
and p and ¢ are arbitrary but fixed (0 < p < q < 1), 1n 1899 in a
long paper on the multivariate normal distribution and its applications,
Sheppard proved the joint asymptotic normality of Galton's aestimators
when the population is normal. He also showed the joint asymptotic
normality of x(“”) and X(HQ). and gave analogues to ﬁ and 5 hased
on any finite number Of sample percentiles {Sheppawd, 1899, p. 131-132).
Sheppard's (sketchy) proof, which is based on an implicit use of the
probability integral transformation, can be easily adapted to any regular
distribution.*

Sheppard's paper also represented the first attempt since Laplace
to optimize performance within a class of linear functions of order
statistics. He both showed how the best choice (for normal populations)
of p and q can be made (1899, p. 135) and found which linear

combination of the three quartiles has the smallest asymptot.c variance

(again for normal populations) (1899, footnote, p. 134). Such functions

*

Twenty years later, Karl Pearson (1920) presented part of Shepparq‘s .

proof in more detail, made the obvious step to more general distributions
than the normal, and much more fully examined the consequences of the resuit.

PO SO V PP SN
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of the three quartiles had bean considared earlier by Edgeworth (1893),
who neqlected the quavrtiles' correlation and erroneously claimed the
astimator with walghts in proportions 5:7:5 to ba superior to the sample
mean for normal populations. Recont work, however, seems to bear out
Edgeworth's c¢latm that such an estimator is to be recommended on grounds
of robustness. (Soe Gastwivth (1966) and Andrews et. al. (1972), for
example. )

The next mathematical work to appear on order statistics was
Karl Pearson's (1902) »xamination of the Galton difference problem. In
this paper, which was inspired by an inquiry of Galton's (1902) as to the
most suitable proportion between the values of first and second prizes,
Pearson gave the joint density of any two consecutive order statistics
and found their expected difference. He remarked in a footnote that

"1 propose on ancther occasion to consider the application of Galton's
problem to a new theory for the rejection of outlying individuals".

This proposal was later carried out by J. 0. Irwin (1925).

In 1920, a remarkable paper appeared in the American Journal of

Mathematics (the journal Simon Mewcomb co-tfounded) by the English mathe-

matician P. J. Daniell. This paper, “Cbservations weighted according to

order", has been all but totally overlooked since it's publication. It

could in fact be claimed that Daniell was at least thir ' years ahead of
his time, for it took that long for his major results to be rediscovered.
While his paper itself is a model of clarity and rigor, its relevance to

modern work is such that it merits a short summary, in his own notation.

The work was apparently inspired by a reading of Poincaré's Calcul

des Probabilités (1912). After remarkina how Poincare had suqgested dis-
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carding extreme observations (when normality is suspect) before taking the

mean, Daniell wrote:

"Besides such a discard-average [fe. the trimmed mean] we might

invent others in which weights might be assigned to the measures
according to their order. In fact the ordinary average or mean, the
median, the discard-averaqe, the numerical deviation ?from the median,
which makes it a minimum), and the quartile deviation can all be
reqarded as calculated by a nrocess in which the measures are multiplied
by factors which are functions of order. It is the general purpose

of this paper to obtain a formula for the mean square deviation of

any such expression. This formula may then be used to measure the
relative accuracies of all such expressions".

Daniell's analysis proceeded as follows: First he explicitly
introduced the probability integral transformation (apparently the first
time this was done*) and exnlained how it can be used to find the moments
of any function of order statistics. Then, he assumed the population
density p(t) was reqular (and indefinitely differentiable), and he
expanded the inverse of the distribution function in a Taylor series to
derive asymntotic exoressions for the mean of an order statistic tr and
the mean product of any two. He thus duplicated some of Sheppard's (1899)
results, but in a much more rigorous manner.

n

Daniell then considered statistics of the Yorm t =}  ft,
r=1
th

where he assumed that the veight fr associated with the r™ order

statistic t. was given by

*
The next being Karl Pearson (1931).
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and put things together to obtain the (now standard*) expression for the
asymptotic variance of t,
s = s ¢%(t) p(t)dt,

-0

where ¢(t) 1is the indefinite integral of f(x(t)), x(t) = ; p(u)du. If
he was less than specific as to why the remainder terms are ;:iformly
negligible, his standard of riqor was nonetheless far above that of the
statistical literature of the time.

In the third section of the paper, Daniell gave the conditions
on f under which the asymptotic mean of & is the population mean or
standard deviation, and defined the "accuracy" of t as the ratio of the
asymptotic variance of the sample mean (or sample standard deviation,
as the case may be) to taat of t. (He also derived the asymptotic variance
of the sample standard deviation here.) In the fourth section, Daniell
gave the optimal weight function f - that which minimizes S2 - for both
the location and scale cases, using standard results from the calculus of
variations, and noted that the optimal estimate of o for the normal case
is as accurate as the sample standard deviation in this case. These results
were not to appear in print again until Jung (1955), although they are in
Bennett's (1952) unpublished thesis.,

The final two sections were concerned with applications. Daniell

gave special attention to the “discard-average" (the trimmed mean),

*See Chernoff, Gastwirth, and Johns (1967).
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presenting the (now standard) expression for its asymptotic variance and
evaluating its performance for various Pearson densities, including
Student's t. He also gave conditions under which the quartile-discard
average is superior to the sample mean. The paper ended with a number
of applications to other estimators of location and sca1e*, with numerical
results. Daniell did not derive the asymptotic normality of %, nor did
he try to state minimal regqularity conditions (indeed, some of his regularity
conditions were implied rather than stated). However, taken altogether
it is a thoroughly modern paper which aimost appears to have been gleaned
from the literature of the 1950's and 1960's.

How could such & paper have gone unnoticed for all these years?**
To see why, we need to learn something of Daniell's life. Percy John Daniell
(1889-1946) received a B.A. degree at Cambridge in 1910 (and an M.A. in
1914), where his honors included Senior Wrangler in Mathematics (1909),
First Class Physics Tripos (1910), and the Raleigh Prize (1912). His stay
at Cambridge would have overlapped R. A. Fisher's, but they were at
different colleges and may not have met. After graduation (and brief stays
at Gottingen and Liverpool), Daniell went to Rice Institute in Houston,
Texas in 1912 as a travelling fellow. He remained at Rice until 1923,
becoming a full professor in 1920. It was at Rice he did his most important
work, principally on the theory of integration (including the development

of what is now known as the Daniell intearal.) In 1924 he returned to

* .
Including the "discard-deviation", where the inner quartiles are
discarded.

wk
A fairly complete review of the literature reveals only two published
citations, Dodd (1922) and Greenberg (1968), and the descriptions there
are superficial and misleading. Daniell's paper came to my attention as
the result of a systematic inspection of the American Journal of Mathematics.
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England to the University of Sheffield, where he remained until his death
at the age of 57. In the latter part of his 1ife he published occasional
papers on applied mathematics, on such topics as flame motion, potentials,
and quadrature formulae.

The paper, Daniell (1920), written at Rice, seems to have been
his only related work in statistics. This fact, together with his isolation
from active statistical research (both at Rice and Sheffield), was largely
responsible for the obscurity of the paper. Daniell's death before his
results were rediscovered and widely discussed, and Wilks' overleooking
his work in the survey paper of 1948 also served to delay recognition of
his priority. As a further irony, these circumstances have helped relegate
to obscurity another important paper of Daniell's, “Integral products and
probability" (1921), in which he presents one of the earliest mathematical
treatments of continuous time Markov processes, including the Chapman-
Kolmogorov equation (ten years before Kolmogorov) and a short treatment

of the Wiener process (two years before Wiener).
4. M-estimators

Recently, much attention has been given to a class of robust )
estimators which Huber calls "M-estimators”, M for maximum-1likelihood
type. (See Huber, 1972). T is said to be an M-estimator corresponding
to a function ¢ if T is a solution to J¢(X; - T) = 0. Each choice of
¢ determines an estimator; if ¢ = p'/p, T 1is the maximum likelihood ;

estimator for the location parameter of the population with density p(t - o).
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As the first appearance of these estimators in the context of robustness
seems to be in the work of Jeffreys after 1920 (see Jeffreys (1932) and
(1939) 1in particular), and as this work is outside the scope of this study,
we shall not dwell on this subject. However, we cannot resist calling
attention to an early reference in which the class of M-estimators is
introduced and their consistency claimed.
In a paper examining the various "proofs" of the method of least

squares, El1lis (1844) began with Gauss's first proof. Letting xi's
denote observed values, a the quantity to be estimated, and e, = Xj - 2,
E11is questions Gauss's a priori designation of the arithmetic mean (the
solution to Z(xi - a) = 0) as the most probable value.

"It [the arithmetic mean] is not the only rule to which these

considerations might lead us. For not only is Je = 0 ultimately,

but Jfe = 0, where fe is any function such that fe = -f(-e);
and therefore we should have

Yf(x-a) = 0,

as an equation which ultimately would give the true value of x when
the number of observations increases sine limite, and which therefore
for a finite number of observations may be looked on in precisely the
same way as the equation which expresses the rule of the arithmetic
mean. There is no discrepancy between these two results. At the limit
they coincide: short of the limit both are approximations to the
truth., Indeed we might form some idea how far the action of fortuitous
causes had disappeared from a given series of observations by assigning
different forms of f, and comparing the different values thus found
for a.

"No satisfactory reason can be assigned why, setting aside mere
convenience, the rule of the arithmetic mean should be singled out
from other rules which are included in the general equation )f(x-a) = 0".
Thus Ellis has claimed (without proof or reqularity conditions)

*
the consistency of M-estimators , and even suggested the class may be useful
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for judging to what degree an estimated value depends on the choice of
estimator, a stability test. Of course E11is was not really concerned with
robustness, only with illuminating the arbitrary nature of Gauss's proof,

but his comments are of interest nonetheless.

A Note on the References

In addition to those works cited below, many other works were
consulted for references and general information. The information on

the life of Simon Newcomb came principally from the Encyclopedia

Britannica, the International Encyclopedia of the Social Sciences, and

Hewcomb's autobiography {1903). The information on the life of Percy

Daniell came from various editions of Who's Who and American Men of
~Cience, and Stewart (1947). Merriman's (1872) biblioqraphy on least
squares was quite useful for the period prior to 1877. I would also like

to thank William Kruskal, Churchill Eisenhart, and Oscar B. Sheynin for

a number of references and helpful comments, A good bibliography of

work since 1920 can be found in H., A, David's Order Statistics (1970).

*Huber proved this in Huber (1964).
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